Many-body system with a four-parameter family of point interactions in one dimension
نویسندگان
چکیده
منابع مشابه
Efficient Many-To-Many Point Matching in One Dimension
[email protected] 2 Department of Computer Science, Villanova University, Villanova, USA. e-mail: [email protected] 3 Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain. Partially supported by projects MCYT BFM2003-00368, MEC MTM2006-01267 and Gen. Cat. 2005SGR00692. e-mail: [email protected] 4 Chercheur qualifié du FNRS, Département d...
متن کاملOn Integrability of Many-Body Problems with Point Interactions
A study of the integrability of one-dimensional quantum mechanical many-body systems with general point interactions and boundary conditions describing the interactions which can be independent or dependent on the spin states of the particles is presented. The corresponding Bethe ansatz solutions, bound states and scattering matrices are explicitly given. Hamilton operators corresponding to spe...
متن کاملAdmissibility in a One Parameter Non-regular Family with Squared-log Error Loss Function
‎Consider an estimation problem in a one-parameter non-regular distribution when both endpoints of the support depend on a single parameter‎. ‎In this paper‎, ‎we give sufficient conditions for a generalized Bayes estimator of a parametric function to be admissible‎. ‎Some examples are given‎. ‎
متن کاملPropagation of chaos for many-boson systems in one dimension with a point pair-interaction
We consider the semiclassical limit of nonrelativistic quantum many-boson systems with delta potential in one dimensional space. We prove that time evolved coherent states behave semiclassically as squeezed states by a Bogoliubov time-dependent affine transformation. This allows us to obtain properties analogous to those proved by Hepp and Ginibre-Velo ([Hep], [GiVe1, GiVe2]) and also to show p...
متن کاملSymmetry, Duality and Anholonomy of Point Interactions in One Dimension
We analyze the spectral structure of the one dimensional quantum mechanical system with point interaction, which is known to be parametrized by the group U(2). Based on the classification of the interactions in terms of symmetries, we show, on a general ground, how the fermion-boson duality and the spectral anholonomy recently discovered can arise. A vital role is played by a hidden su(2) forme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1999
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/32/26/311